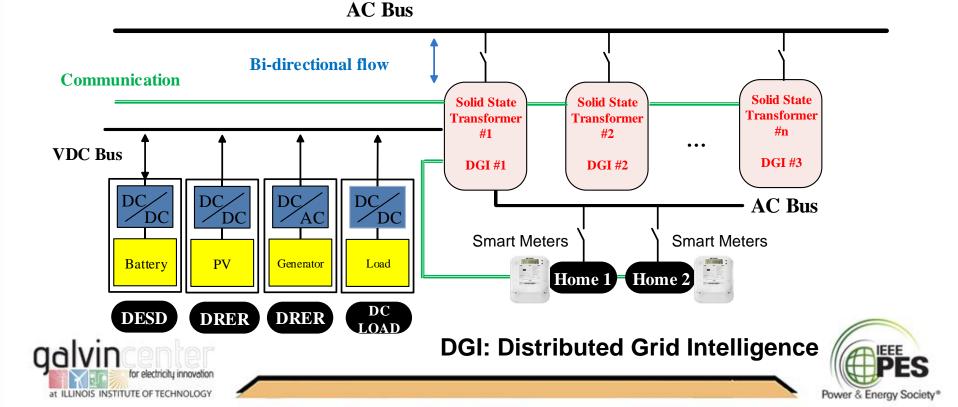
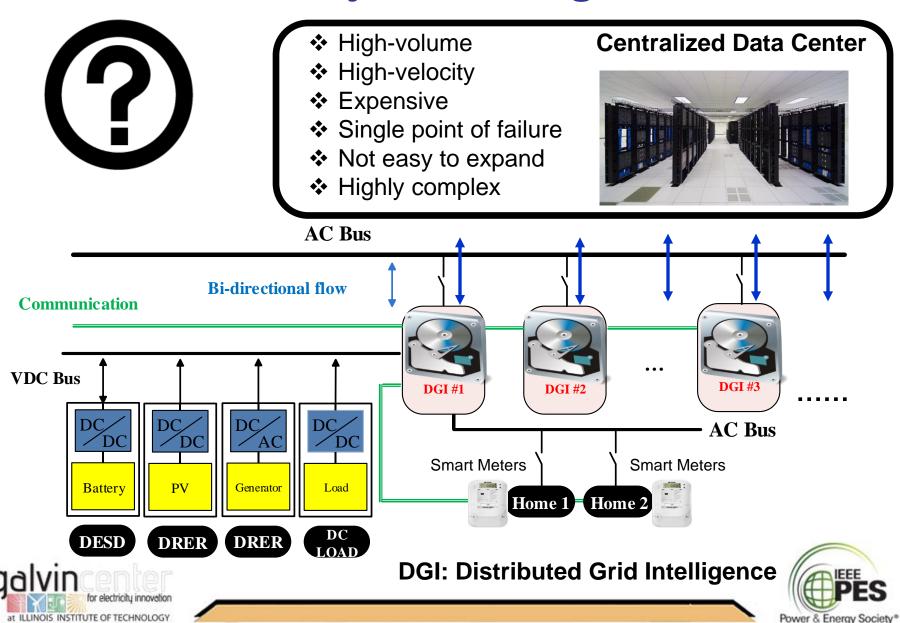
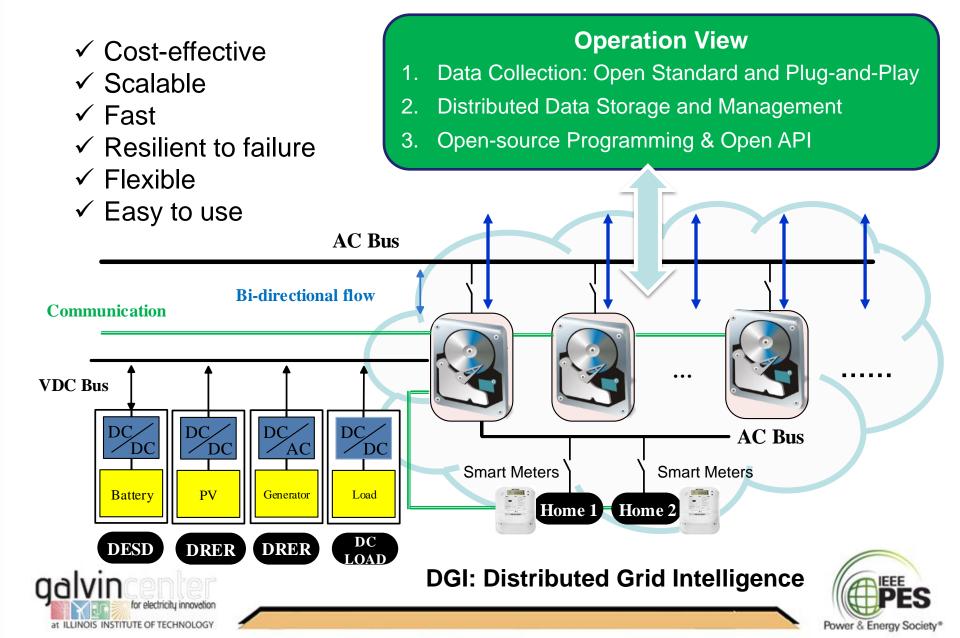
A High-availability and Fault-tolerant Distributed Data Management Platform for Smart Grid Applications

Ni Zhang, Yu Yan, and Shengyao Xu, and Dr. Wencong Su Department of Electrical and Computer Engineering University of Michigan-Dearborn




Copyright © 2014 Wencong Su (wencong@umich.edu)

Objectives

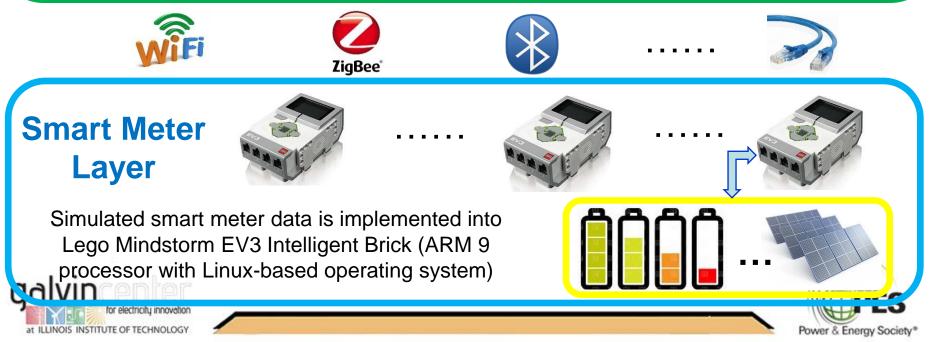

- To investigate a radically different approach through *distributed* software agents to store and process a massive amount of smart grid data in a timely and reliable fashion
- To substantiate the proposed distributed data management systems for smart grid implementation on a *proof-of-concept demonstration*

Major Challenges

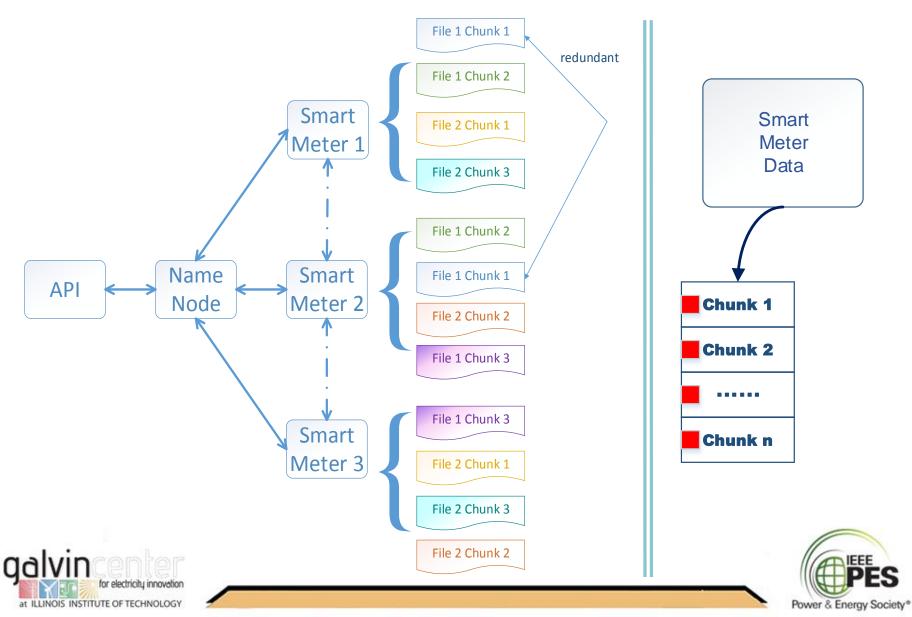
Distributed Data Storage and Processing

Proof-of-Concept Demo

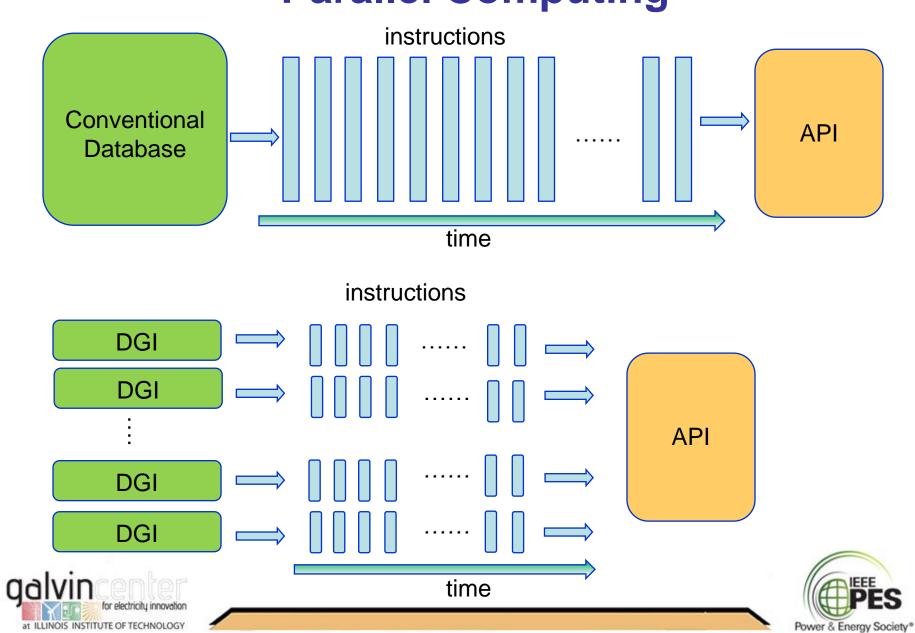
A cluster of low-cost single board PCs (e.g., CubieBoard)

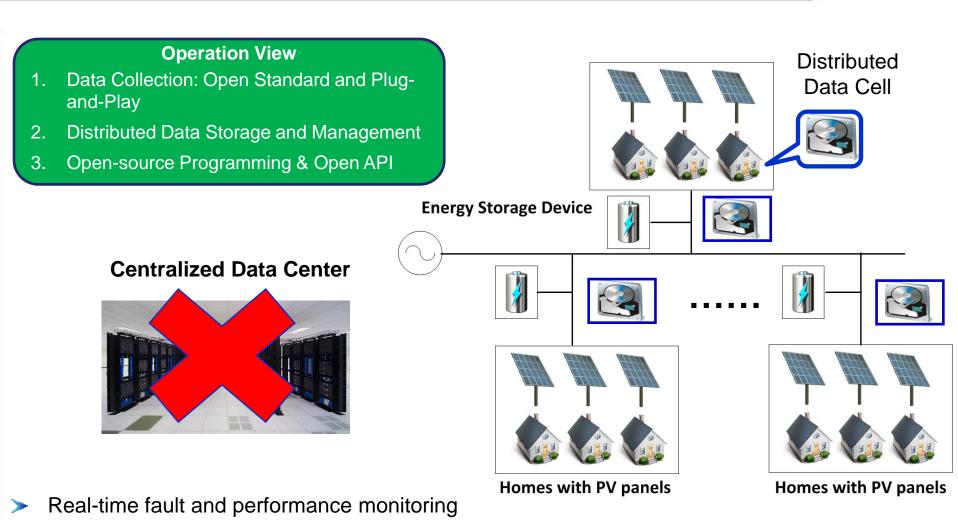

· High-availability distributed object-oriented platform

• Google's MapReduce and Google File System


DGI

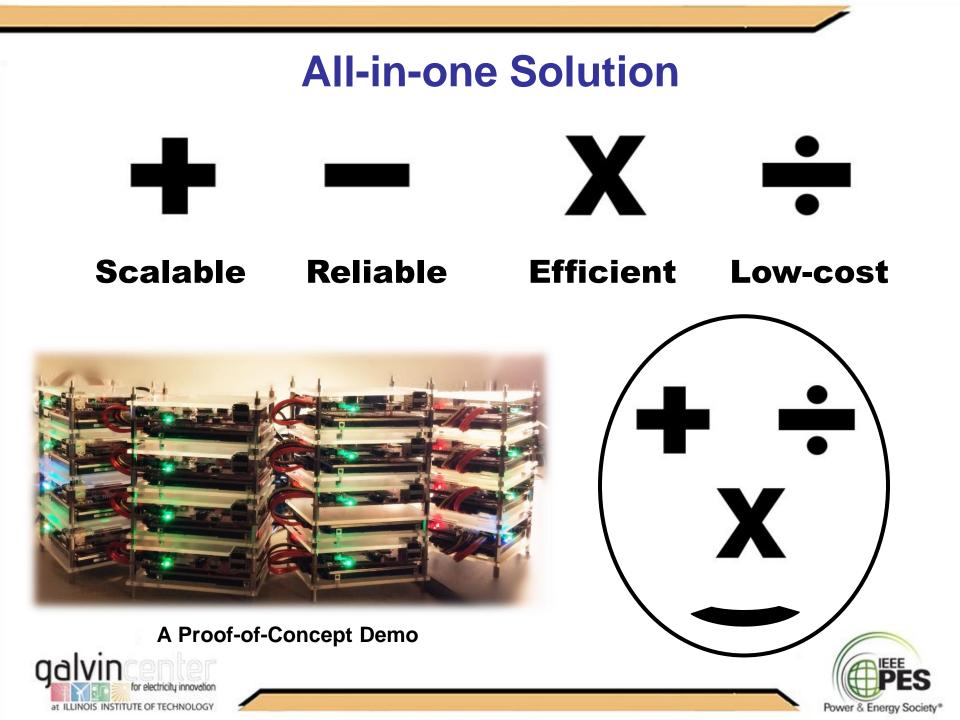
Layer





Hadoop Distributed File System (HDFS)

Parallel Computing



- > Distributed data storage and processing
- Automated altering system (e.g., battery state-of-charge, inverter failure, device disconnection, voltage sags/surges, low performance yield)

Plug-and-Play

Highly Scalable Data Storage System:

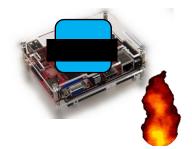
- Easy to add commodity servers and disks to scale up storage
- Bandwidth scales linearly with the number of DGI nodes and disks
- Fast to rebalance the entire data file

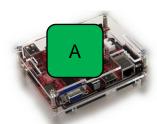
Cluster Summary			Cluster Summary		
263 files and directories, 252 blocks	= 5	15 total.	258 files and directories, 243 blocks	s = 50)1 total. I
Configured Capacity	:	1.69 TB	Configured Capacity	:	1.69 TB
DFS Used	:	17.57 GB◀	DFS Used	→:	17.46 GB
Non DFS Used	:	126.76 GB	Non DFS Used	:	126.76 GB
DFS Remaining	:	1.55 TB	DFS Remaining	:	1.55 TB
DFS Used%	:	1.01 %	DFS Used%	:	1.01 %
DFS Remaining%	:	91.68 %	DFS Remaining%	:	91.68 %
Live Nodes	:	12-	Live Nodes		15
Dead Nodes	:	3	<u>Dead Nodes</u>	:	0
Decommissioning Nodes	:	0	Decommissioning Nodes	:	0
Number of Under-Replicated Blocks	:	0	Number of Under-Replicated Blocks	:	0

galvin for electricity innovation at ILLINOIS INSTITUTE OF TECHNOLOGY

Reliable

API #1: Find abnormal values 59.8 < frequency < 60.2



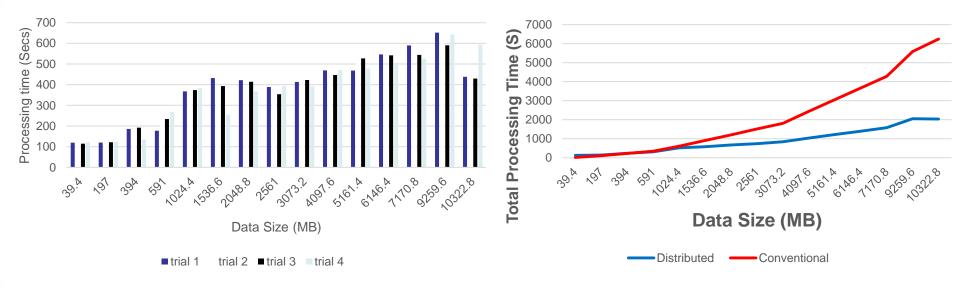

DataNodes (smart meters)

"Replication Factor" = 3 Data Format: ID; Voltage; Current; Temp; Frequency 234,000,000 rows ~10GB

A	Α	
	1	

hive>	> select * f	from prob	olem limi	it 10;	
OK					
2 3	109.994	21.3076	28.3818	59.7789	
3	110.088	18.6367	24.1194	59.7355	
	110.395	21.5609	29.2089	60.2764	
8	109.763	21.9666	23.5411	59.657	
10	109.821	18.8199	27.3487	60.3424	
	110.346				
14	109.813	19.466	23.1061	60.2381	
16	110.092	21.2459	27.1855	60.2211	
	110.03				
19	109.755	21.1212	31.0692	59.7266	
Time	taken: 0.07	77 second	ds, Fetch	ned: 10	row(

Reliable and Fault-tolerance Data Storage:


No need to repair a failed DGI node immediately
The entire data file is always accessible

Efficient

- > Allows parallel data processing over a large amount of smart grid data
- Reduce overall processing time through parallel & faster execution

Total processing times using the distributed data management systems over different data size and trials

NOIS INSTITUTE OF TECHNOLOG

Comparison on average data processing time using distributed and conventional data management systems

Low-Cost

Conventional database replies on very expensive, proprietary hardware and different systems to store and process data.

	mptions									
	Cost of power (\$/kwh):	\$0.07								
	Cost of Facility (\$):	\$200,000,000.00								
	Facilities Amortization:	180		(15 years)						
	Number of Servers:	50,000.00								
	Cost/Server (\$)	\$2,000.00								
	Server Amortization (months)	36		(3 years)						
	Size of Facility (Critical Load MW):	15,000,000.00		(15MW)						
	Annual Cost of Money (%):	5%								
	Average Power Usage (%):	80%		(Average	6 of prov	isioned po	wer use	d)		
	Power Usage Effectiveness	1.7								
	Power and Cooling Infrastrucure (%)	82%		(% of infra	structure	that is po	wer & co	oling)	ě.	
	Network egress charges not included	d (workload depen	dent)							
Calcu	lations									
	Infrastructure	\$1,581,587	[=-PMT(C	ostOfMoney/1	2,Facility/	Amortizatio	n,Facility(Cost,0)]	1	
	Servers	\$2,997,090	[=-PMT(C	ostOfMoney/1	2, ServerA	mortization	, ServerCo	ount*Se	erverCos	st, 0)]
	Power & Cooling Infrastructure	\$1,296,902	[=Infrastr	uctureMonthl	y*PowerA	ndCoolikng	Infrastruc	turePer	rcentage	e]
	Power	\$1,042,440	[=MegaW	attsCriticalLo	ad*Averag	ePowerUsa	ge/1000*6	PUE*Po	owerCos	t*24*365/:
	Other Infrastructure	\$284,686	[=+Infrast	tructureMonth	ly-PowerA	ndCoolingI	nfrastruct	tureMo	onthly]	
	Full burdened Power	\$2,339,342	[=+Power	AndCoolingIn	rastructur	eMonthly+	PowerMor	Ind day		
				Andcoomigin		CIVIOIIUIIY	OWEINIO	nuniyj		
	Total:	\$5,621,117 Monthly C		Andeoomigni		ewonanyn		nunyj		
		\$5,621,117 Monthly C \$2,997,09	osts	Se Po Ini Po	rvers wer & (irastruc wer	Cooling				
	\$284,686 \$1,042,440 \$1,296,902	Monthly C	osts	E Se Pc In Pc Ot	rvers wer & (frastruc wer her Infr	Cooling				

- No need to built high-cost data center
- The proposed framework can be easily extended and tailored to the existing smart meter infrastructure.
 - ~46 million smart meters in U.S. as of 2013.

Future Work

- Design a user-friendly graphical user interface (e.g., realtime alerting; interactive mapping tool) for residential owners, utilities, utility commission, and other entities
- Develop a massive array of mini PC-based distributed data storage and processing testbed for a large-scale system
- > Design a user-friendly graphical user interface
- Customize the MapReduce algorithms to meet specific needs of smart grid applications
- > Apply it to support data-intensive Smart Grid and other big data applications (e.g., intelligent transportation systems)
- Collaboration with industry partners

Acknowledgement

- This work was partially supported by the National Science Foundation (NSF) under Award Number EEC-0812121.
- 2. This work was also supported by the New Faculty Start-Up Fund at University of Michigan-Dearborn.

N. Zhang, Y. Yan, S. Xu, and **W. Su**^{*}, "A Distributed Data Storage and Processing Framework for Next-Generation Residential Distribution Systems", *Electric Power Systems Research*, vol.116, pp.174–181, November 2014. (Link)

Copyright © 2014 Wencong Su (wencong@umich.edu)

